Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
Yi Chuan ; 44(9): 783-797, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384955

RESUMO

Human ß-thalassemia is closely associated with aberrant expression of ß-like globin genes. Human ß-like globin genes are organized in the order of 5'-ε-Gγ-Aγ-δ-ß-3' within the ß-globin locus. The expression of ß-like globin genes is regulated by 3'HS1 and five DNase I hypersensitive sites (5'HS5~5'HS1) in a locus control region. The 5'HS2 enhancer transcribes enhancer RNA and regulates the expression of ε-globin, γ-globin and ß-globin. To further study the function of 5'HS2, we detected the local 3D genomic architecture via chromatin conformation capture experiments and used CRISPR/ Cas9-based DNA fragment editing to delete 5'HS2 in human K562 leukaemia cells. In this study, we found that 5'HS2-mediated chromatin interactions were enriched in a topologically associated domain that was bordered by 3'HS1 and 5'HS5. Within this topologically associated domain, 5'HS2 is highly close to the promoter regions of HBE1, HBG2 and HBG1. Upon deletion of the 5'HS2 enhancer, 91 genes were significantly down-regulated with reduced abundance of H3K27ac at their promoter regions. These down-regulated genes are mainly associated with oxygen transport, immune response, cell adhesion, anti-oxidant and thrombosis. These data suggested that many genes associated with functions of erythrocytes were decreased at transcriptional levels upon deletion of the 5'HS2 enhancer.


Assuntos
Elementos Facilitadores Genéticos , Região de Controle de Locus Gênico , Globinas beta , Humanos , Sequência de Bases , Globinas beta/genética , Cromatina/genética , DNA/genética , Células K562 , Região de Controle de Locus Gênico/genética , Deleção de Sequência
2.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982814

RESUMO

Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.


Assuntos
Glândulas Endócrinas/metabolismo , Fator de Crescimento Insulin-Like II/genética , Região de Controle de Locus Gênico , Placenta/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Animais , Feminino , Loci Gênicos , Impressão Genômica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo
3.
Int J Biol Macromol ; 201: 216-225, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973267

RESUMO

The human ß-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression contains five tissue-specific DNase I-hypersensitive sites (HSs). A single nucleotide polymorphism (SNP) (A â†’ G) present in HS4 region of locus control region (LCR), have shown a notable association between the G allele and the occurrence of ß-thalassemia. This SNP site exhibiting a hairpin - duplex equilibrium manifested in A â†’ B like DNA transition has previously been reported from this laboratory. Since, DNA is a dynamic and adaptable molecule, so any change of a single base within a primary DNA sequence can produce major biological consequences commonly manifested in genetic disorders such as sickle cell anemia and ß-thalassemia. Herein, the differential behavior of sequential single base substitutions G â†’ A on the quasi-palindromic sequence (d-TGGGGGCCCCA; HPG11) has been explored. A combination of native gel electrophoresis, circular dichroism (CD), and UV-thermal denaturation (Tm) techniques have been used to investigate the structural polymorphism associated with various variants of HPG11 i.e. HPG11A2 to HPG11A5. The CD spectra confirmed that all the HPG11 variants exhibit a hairpin - duplex equilibrium. Oligomer concentration dependence on CD spectra has been correlated with A â†’ B DNA conformational transition. However, as revealed in gel electrophoresis, HPG11A2 â†’ A5 exhibit the formation of a tetramolecular structure (four-way junction) at higher oligomer concentration. UV-melting studies also supported the melting of hairpin, duplex and four-way junction structure. This polymorphism pattern may possibly be significant for DNA-protein recognition, in the process of regulation of LCR in the ß-globin gene.


Assuntos
Região de Controle de Locus Gênico , Globinas beta , Sequência de Bases , Globinas , Humanos , Família Multigênica , Polimorfismo de Nucleotídeo Único , Globinas beta/genética
4.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954189

RESUMO

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Assuntos
Neoplasias Colorretais , beta Catenina , Carcinogênese/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorretais/patologia , Humanos , Ligantes , Região de Controle de Locus Gênico , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194745, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389511

RESUMO

The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level.


Assuntos
Ontologias Biológicas , Regulação da Expressão Gênica , Elementos Reguladores de Transcrição , Região de Controle de Locus Gênico
7.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299205

RESUMO

Gain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NCoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known about how Kaiso influences DNA methylation at the genome level. Here we show that deficiency of Kaiso led to whole-genome hypermethylation, using Kaiso deficient human renal cancer cell line obtained via CRISPR/CAS9 genome editing. However, Kaiso serves to protect genic regions, enhancers, and regions with a low level of histone modifications from demethylation. We detected hypomethylation of binding sites for Oct4 and Nanog in Kaiso deficient cells. Kaiso immunoprecipitated with de novo DNA methyltransferases DNMT3a/3b, but not with maintenance methyltransferase DNMT1. Thus, Kaiso may attract methyltransferases to surrounding regions and modulate genome methylation in renal cancer cells apart from being methyl DNA binding protein.


Assuntos
Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/metabolismo , Região de Controle de Locus Gênico , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like II/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Genetica ; 149(3): 191-201, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33914198

RESUMO

The vertebrate mitochondrial genome is characterized by an exceptional organization evolving towards a reduced size. However, the persistence of a non-coding and highly variable control region is against this evolutionary trend that is explained by the presence of conserved sequence motifs or binding sites for nuclear-organized proteins that regulate mtDNA maintenance and expression. We performed a comparative mitogenomic investigation of the non-coding control region to understand its evolutionary patterns in Clupeoid fishes which are widely distributed across oceans of the world, exhibiting exemplary evolutionary potential. We confirmed the ability of sequence flanking the conserved sequence motifs in the control region to form stable secondary structures. The existence of evolutionarily conserved secondary structures without primary structure conservation suggested the action of selective constraints towards maintaining the secondary structure. The functional secondary structure is maintained by retaining the frequency of discontinuous AT and TG repeats along with compensatory base substitutions in the stem forming regions which can be considered as a selective constraint. The nucleotide polymorphism along the flanking regions of conserved sequence motifs can be explained as errors during the enzymatic replication of secondary structure-forming repeat elements. The evidence for selective constraints on secondary structures emphasizes the role of the control region in mitogenome function. Maintenance of high frequency of discontinuous repeats can be proposed as a model of adaptive evolution against the mutations that break the secondary structure involved in the efficient regulation of mtDNA functions substantiating the efficient functioning of the control region even in a high nucleotide polymorphism environment.


Assuntos
Peixes/genética , Genoma Mitocondrial , Região de Controle de Locus Gênico , Seleção Genética , Animais , Sequência Conservada , Evolução Molecular , Polimorfismo de Nucleotídeo Único
9.
Forensic Sci Int Genet ; 52: 102484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662687

RESUMO

Forensic DNA analysis of hair evidence typically involves the amplification and sequencing of the control region (CR) of the mitochondrial genome (mtgenome). In compromised hair samples, such as shed hairs, the number of mtgenome copies could be low; thus, it is imperative that the polymerase used in PCR is efficient to ensure maximum amplification. Considering this, the first phase of this study compared the yields obtained from 12 polymerases (sourced from a range of commercial companies) when amplifying the CR, hypervariable (HV) region II (HV2), and hypervariable subregion II-B (HV2B). This initial assessment was performed using mitochondrial DNA (mtDNA) extracted from 2 cm of hair adjacent to the root from three donors of different self-reported ancestries and hair color/texture. PrimeSTAR HS and KAPA HiFi HotStart consistently generated significantly higher amplicon yields (p < 0.05, ~5-fold increase) for most regions than AmpliTaq Gold DNA polymerase (the polymerase validated for use in most forensic laboratories). The second phase of this project was focused on assessing the broad utility of these top two performing polymerases for amplifying two regions of the mtgenome (CR and HV2B) from hair samples representing diverse self-reported ancestral origins (European, Latin American, African American, Asian, and Native American), characteristics/treatments (bleached, dyed, and chemically straightened), and anatomical origins (e.g., head and pubic region) (n = 41). These regions were chosen as they are the most challenging to amplify and sequence in compromised hair samples due to length (i.e., the CR is ~1.2 kb) and repeat structure (i.e., the polycytosine stretch within HV2B). The results indicated that regardless of sample type, PrimeSTAR HS and KAPA HiFi HotStart polymerases outperformed (p < 0.05) AmpliTaq Gold DNA polymerase (averaging 11- and 8-fold increased yields, respectively). The results from this study highlight that enhanced commercially available polymerases appear to significantly improve the amplification of mtDNA from challenging hair samples.


Assuntos
DNA Mitocondrial/genética , Cabelo/química , Reação em Cadeia da Polimerase/métodos , Eletroforese Capilar , Genoma Mitocondrial , Humanos , Região de Controle de Locus Gênico/genética , Grupos Raciais
10.
Int J Legal Med ; 135(4): 1191-1199, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33586030

RESUMO

Population and geographic assignment are frequently undertaken using DNA sequences on the mitochondrial genome. Assignment to broad continental populations is common, although finer resolution to subpopulations can be less accurate due to shared genetic ancestry at a local level and members of different ancestral subpopulations cohabiting the same geographic area. This study reports on the accuracy of population and subpopulation assignment by using the sequence data obtained from the 3070 mitochondrial genomes and applying the K-nearest neighbors (KNN) algorithm. These data also included training samples used for continental and population assignment comprised of 1105 Europeans (including Austria, France, Germany, Spain, and England and Caucasian countries), 374 Africans (including North and East Africa and non-specific area (Pan-Africa)), and 1591 Asians (including Japan, Philippines, and Taiwan). Subpopulations included in this study were 1153 mitochondrial DNA (mtDNA) control region sequences from 12 subpopulations in Taiwan (including Han, Hakka, Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, Tao, and Pingpu). Additionally, control region sequence data from a further 50 samples, obtained from the Sigma Company, were included after they were amplified and sequenced. These additional 50 samples acted as the "testing samples" to verify the accuracy of the population. In this study, based on genetic distances as genetic metric, we used the KNN algorithm and the K-weighted-nearest neighbors (KWNN) algorithm weighted by genetic distance to classify individuals into continental populations, and subpopulations within the same continent. Accuracy results of ethnic inferences at the level of continental populations and of subpopulations among KNN and KWNN algorithms were obtained. The training sample set achieved an overall accuracy of 99 to 82% for assignment to their continental populations with K values from 1 to 101. Population assignment for subpopulations with K assignments from 1 to 5 reached an accuracy of 77 to 54%. Four out of 12 Taiwanese populations returned an accuracy of assignment of over 60%, Ami (66%), Atayal (67%), Saisiyat (66%), and Tao (80%). For the testing sample set, results of ethnic prediction for continental populations with recommended K values as 5, 10, and 35, based on results of the training sample set, achieved overall an accuracy of 100 to 94%. This study provided an accurate method in population assignment for not only continental populations but also subpopulations, which can be useful in forensic and anthropological studies.


Assuntos
Algoritmos , DNA Mitocondrial/genética , Genética Populacional/métodos , Região de Controle de Locus Gênico , Filogenia , Grupos Raciais/genética , Humanos , Povos Indígenas/genética , Taiwan/etnologia
11.
Nucleic Acids Res ; 49(3): 1383-1396, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476375

RESUMO

Super-enhancers (SEs) mediate high transcription levels of target genes. Previous studies have shown that SEs recruit transcription complexes and generate enhancer RNAs (eRNAs). We characterized transcription at the human and murine ß-globin locus control region (LCR) SE. We found that the human LCR is capable of recruiting transcription complexes independently from linked globin genes in transgenic mice. Furthermore, LCR hypersensitive site 2 (HS2) initiates the formation of bidirectional transcripts in transgenic mice and in the endogenous ß-globin gene locus in murine erythroleukemia (MEL) cells. HS2 3'eRNA is relatively unstable and remains in close proximity to the globin gene locus. Reducing the abundance of HS2 3'eRNA leads to a reduction in ß-globin gene transcription and compromises RNA polymerase II (Pol II) recruitment at the promoter. The Integrator complex has been shown to terminate eRNA transcription. We demonstrate that Integrator interacts downstream of LCR HS2. Inducible ablation of Integrator function in MEL or differentiating primary human CD34+ cells causes a decrease in expression of the adult ß-globin gene and accumulation of Pol II and eRNA at the LCR. The data suggest that transcription complexes are assembled at the LCR and transferred to the globin genes by mechanisms that involve Integrator mediated release of Pol II and eRNA from the LCR.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , RNA/metabolismo , Transcrição Gênica , Globinas beta/genética , Adulto , Animais , Linhagem Celular Tumoral , Endorribonucleases/genética , Feto , Humanos , Fígado/embriologia , Fígado/metabolismo , Região de Controle de Locus Gênico , Camundongos Transgênicos , RNA/fisiologia , RNA Polimerase II/metabolismo , Globinas beta/biossíntese
12.
Mol Ther ; 29(4): 1625-1638, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33515514

RESUMO

Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation.


Assuntos
Anemia Falciforme/genética , Transplante de Medula Óssea , Terapia Genética , Globinas beta/genética , Talassemia beta/genética , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Animais , Expressão Gênica/genética , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Hemoglobinas/genética , Xenoenxertos , Humanos , Lentivirus/genética , Região de Controle de Locus Gênico/genética , Camundongos , Transdução Genética , Globinas beta/uso terapêutico , Talassemia beta/sangue , Talassemia beta/patologia , Talassemia beta/terapia
13.
Int J Legal Med ; 135(2): 421-425, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33150489

RESUMO

BACKGROUND: Although Iraq has one of the world's oldest cultural histories and an important geographic location, forensic reference data on mitochondrial DNA (mtDNA) control region in Iraqi populations are scarce, particularly for populations residing in the southern part of Iraq. Mitochondrial DNA typing is an excellent tool for forensic investigations and in missing-person cases because of its unique qualities, such as mtDNA non-coding control region with specific genetic markers, high copy numbers in cells, maternal inheritance, and lack of recombination. METHODS: Forensic analysis was performed on the entire mtDNA control region in 203 unrelated Iraqi individuals residing in Samawah City of Iraq. Polymorphisms in the mtDNA were detected using polymerase chain reaction and Sanger-type sequencing, and the sequences were aligned to compare with revised Cambridge Reference Sequence (rCRS). RESULTS: The sequencing results revealed 111 haplotypes characterized by 143 polymorphic positions. Of these haplotypes, 63 were unique and 48 were shared by more than one person. The haplotype data generated in this study will be available on EMPOP via accession number EMP00814.


Assuntos
Impressões Digitais de DNA/métodos , DNA Mitocondrial/análise , Haplótipos , Região de Controle de Locus Gênico , Polimorfismo Genético , Bases de Dados Genéticas , Etnicidade/genética , Feminino , Genética Forense/métodos , Humanos , Iraque/etnologia , Masculino , Análise de Sequência de DNA
14.
Sci Rep ; 10(1): 19634, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184340

RESUMO

Most of the human genome is non-coding. However, some of the non-coding part is transcriptionally active. In humans, the tandemly repeated (TR) pericentromeric non-coding DNA-human satellites 2 and 3 (HS2, HS3)-are transcribed in somatic cells. These transcripts are also found in pre- and post-implantation embryos. The aim of this study was to analyze HS2/HS3 transcription and cellular localization of transcripts in human maturating oocytes. The maternal HS2/HS3 TR transcripts transcribed from both strands were accumulated in the ooplasm in GV-MI oocytes as shown by DNA-RNA FISH (fluorescence in-situ hybridization). The transcripts' content was higher in GV oocytes than in somatic cumulus cells according to real-time PCR. Using bioinformatics analysis, we demonstrated the presence of polyadenylated HS2 and HS3 RNAs in datasets of GV and MII oocyte transcriptomes. The transcripts shared a high degree of homology with HS2, HS3 transcripts previously observed in cancer cells. The HS2/HS3 transcripts were revealed by a combination of FISH and immunocytochemical staining within membraneless RNP structures that contained DEAD-box helicases DDX5 and DDX4. The RNP structures were closely associated with mitochondria, and are therefore similar to membraneless bodies described previously only in oogonia. These membraneless structures may be a site for spatial sequestration of RNAs and proteins in both maturating oocytes and cancer cells.


Assuntos
DNA Satélite/genética , Mitocôndrias/química , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Ribonucleoproteínas/metabolismo , Células do Cúmulo/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Região de Controle de Locus Gênico , Ribonucleoproteínas/química , Transcriptoma
15.
Biosci Rep ; 40(12)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33245090

RESUMO

Mitochondrial genome is a powerful molecule marker to provide information for phylogenetic relationships and revealing molecular evolution in ichthyological studies. Sebastiscus species, a marine rockfish, are of essential economic value. However, the taxonomic status and phylogenetic relationships of Sebastidae have been controversial so far. Here, the mitochondrial genomes (mitogenomes) of three species, S. tertius, S. albofasciatus, and S. marmoratus, were systemically investigated. The lengths of the mitogenomes' sequences of S. tertius, S. albofasciatus, and S. marmoratus were 16910, 17056, and 17580 bp, respectively. It contained 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNA (tRNA) genes, and one identical control region (D-loop) among the three species. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, which were most likely due to the difference in their living environment. The phylogenetic tree was constructed by Bayesian Inference (BI) and Maximum Likelihood (ML). Most interestingly, the results indicated that Sebastidae and Scorpaenidae were grouped into a separate branch, so the taxonomic status of Sebastidae should be classified into subfamily Sebastinae. Our results may lead to a taxonomic revision of Scorpaenoidei.


Assuntos
DNA Mitocondrial/genética , Proteínas de Peixes/genética , Peixes/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Animais , Uso do Códon , Evolução Molecular , Peixes/classificação , Região de Controle de Locus Gênico
16.
Mol Cell ; 80(5): 845-861.e10, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232656

RESUMO

Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Região de Controle de Locus Gênico/imunologia , Animais , Linfócitos B/citologia , Linhagem Celular Tumoral , Centro Germinativo/citologia , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/imunologia , Camundongos , Camundongos Knockout , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/imunologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Transativadores/genética , Transativadores/imunologia
17.
Int J Legal Med ; 134(5): 1563-1568, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32358724

RESUMO

Mitochondrial DNA (mtDNA) control region sequences from hair samples of 213 individuals from Thailand were analyzed using Sanger sequencing. A total of 170 different haplotypes were identified, of which 146 occurred only once (unique haplotypes). The dataset showed a random match probability of 0.87% and a haplotype diversity of 0.9960. The samples were assigned to 85 different haplogroups with B5a, F1a1a, and M being the most frequent ones. Pairwise FST-values between this and other Southeast and East Asian populations revealed significant but relatively low differences, indicating a close relation. Heteroplasmic positions were observed in 12.2% of hair samples confirming the frequent appearance of heteroplasmic positions in hairs. This dataset will complement existing data as an mtDNA reference for forensic investigations.


Assuntos
Povo Asiático/etnologia , DNA Mitocondrial/análise , Etnicidade/genética , Cabelo/química , Haplótipos , Região de Controle de Locus Gênico , Análise de Variância , Conjuntos de Dados como Assunto , Feminino , Variação Genética , Genética Populacional , Humanos , Masculino , Análise de Sequência de DNA
18.
Hemoglobin ; 44(2): 113-117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32319326

RESUMO

Hb F production is under the influence of major quantitative trait loci (QTL). The present study aims: i) to replicate the association with Hb F for representative genetic variants in the three major Hb F QTLs in a Portuguese sample of ß-thalassemia (ß-thal) carriers; and ii) to test different genetic multi-locus models to account for the genetic component of Hb F variation. A population sample of 79 Portuguese ß-thal carriers (39 males, 40 females), aged between 2 to 70 years old, were genotyped for polymorphisms in the locus control region (LCR)-5' hypersensitive site 4 (5'HS4) rs16912979, XmnI-HBG2 rs7482144, BCL11A rs1427407 and HMIP rs66650371, using standard biomolecular procedures. Univariate linear regression models were used to test for genetic associations with Hb F. The minor alleles of the individual variants BCL11A rs1427407 (T) (0.165), HMIP rs66650371 (3 bp del) (0.247) and XmnI-HBG2 rs7482144 (T) (0.196), were found to be significantly associated with increased levels of Hb F (p = 0.029, p = 0.002 and p = 0.0004, respectively), explaining about 6.0, 12.0 and 15.0% of Hb F variation, respectively. In a multiple linear regression approach, the three loci accounted for about 30.0% of Hb F variance. Two genetic risk scores (GRS), rationalizing the number of minor alleles into a single genetic variable, explained about 30.0 and 32.0% of the Hb F variation. In conclusion, we replicated in ß-thal carriers previously reported associations with Hb F. Multi-locus models combining three representative variants of Hb F influencing QTLs can explain a larger amount of Hb F variability.


Assuntos
Hemoglobina Fetal/genética , Talassemia beta/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Frequência do Gene , Variação Genética , Humanos , Região de Controle de Locus Gênico , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Portugal/epidemiologia , Locos de Características Quantitativas , Adulto Jovem , Talassemia beta/epidemiologia
19.
Gene ; 743: 144606, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32199948

RESUMO

DNA demethylation and suppression of de novo DNA methylation are activities that maintain an unmethylated state. However, the strength of these two activities at the same locus has not been estimated separately. Furthermore, the association between these two activities and the unmethylated state remains unclear. Octamer-binding transcription factor-binding sequences (OBSs) and CCCTC-binding factor-binding sequences (CBSs) within the mouse H19-imprinted control region (ICR) are involved in the induction of DNA demethylation and maintenance of the unmethylated state in mouse undifferentiated embryonic cell lines. To reveal the association between the two cis-elements and the two unmethylated state maintenance activities in maintaining the unmethylated state of the ICR, we evaluated the altered DNA methylation levels at sites that were initially methylated or unmethylated using a stable transfection-based assay, and estimated the strength of the two unmethylated state maintenance activities separately via a Poisson process model that described the DNA methylation state regulatory process. Although DNA demethylation depending on OBSs affected almost the entire ICR, DNA demethylation depending on CBSs occurred near CBSs, resulting in redundant demethylation of CBS regions. Detailed analysis of the CBS4 region suggested that OBSs were required to induce unmethylated state maintenance activities, and that CBSs-dependent activities contributed, but diminished, during incubation when protection of the CBS4 region by OBSs-dependent activities was absent. Analysis via the Poisson process model indicated that the unmethylated state at the CBS4 region was maintained by OBSs-dependent suppression of de novo DNA methylation rather than DNA demethylation. We propose that the hierarchical regulation of redundant protection of the CBS region via cooperation between the two unmethylated state maintenance activities is a potential function of the ICR that effectively maintains allele-specific methylation status in the same DNA sequence.


Assuntos
Desmetilação do DNA , Metilação de DNA/genética , Impressão Genômica , Região de Controle de Locus Gênico/genética , Animais , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular Tumoral , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante/genética
20.
Genome Biol ; 21(1): 59, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138752

RESUMO

The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9, endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and function.


Assuntos
Proteína 9 Associada à CRISPR , Cromatina/química , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Biotinilação , Diferenciação Celular/genética , Células Eritroides , Loci Gênicos , Região de Controle de Locus Gênico , Globinas beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...